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Psychology 308c Interactions and Centering in Regression: MRC09 
Dale Berger Salaries for graduate faculty in psychology 

 

This example illustrates modeling an interaction with centering and transformations. Our goal is 

to build a model for psychology graduate faculty salary as a function of years in tenure track and 

program level (MA only or PhD) of academic employment.   

 

These are real data from the APA Research Office, taken from a 2005 study of salaries of faculty 

in graduate psychology programs as described in MRC08. The data set is available at 

http://wfs.cgu.edu/bergerd/Data/APAsal05.sav . 

 

In the earlier analysis we learned that salary is related to the number of years faculty members 

are in a tenure track position (yearstt) and whether they teach at an MA only or PhD institution 

(level), and we found a statistically significant interaction between these two variables such that 

the relationship between yearstt and salary is greater at PhD institutions than at MA only 

institutions. After we control for time on the job, sex is not predictive of salary and there are no 

interactions with sex. Consequently, we will not include sex in the model for predicting salary. 

 

We also found that compared to salary, the log of salary (lnsal) showed a stronger relationshp 

with yearstt and there were fewer outliers. For this reason we will model lnsal, but then convert 

back to salary to present our findings to a lay audience. 

 

To measure program level, we will code leveld as MA = 0 and PhD = 1. We will limit the 

analysis to faculty in tenure track positions.  For illustration we will first analyze the data without 

centering and then with centering to allow a comparison of the results. 

 

The first step is to create a new variable, levxyear, to serve as an interaction term. We do this by 

multiplying leveld by yearstt. In the regression analysis it is important to enter the main effects 

prior to the interaction term so that we can test the contribution of the interaction beyond those 

main effects. Below is the syntax; on the next page are the point and click instructions. 

 

use all.         

split file off.  

*compute term for interaction between leveld and yearstt. 

compute levxyear = leveld*yearstt. 

 

REGRESSION 

  /DESCRIPTIVES MEAN STDDEV CORR SIG N 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE ZPP 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT lnsal 

  /METHOD=ENTER yearstt 

  /METHOD=ENTER leveld 

  /METHOD=ENTER levxyear 

  /SCATTERPLOT=(*ZRESID ,*ZPRED) 

  /RESIDUALS HIST(ZRESID) NORM(ZRESID) 

  /CASEWISE PLOT(ZRESID) OUTLIERS(3). 

To assure that any earlier split file is turned off. 

http://wfs.cgu.edu/bergerd/Data/APAsal05.sav
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To generate the syntax on the previous page, click Transform, Compute Variable…, in the 

Target Variable: window enter levxyear and in the Numeric Expression: window enter 

leveld*yearstt, click OK.  For the regression analysis, click Analyze, Regression, Linear…, then 

select lnsal as the Dependent variable, select yearstt as the first Independent, click Next, select 

leveld as the next Independent variable, click Next, and select levxyear as the last Independent 

variable. Click Statistics… and select Estimates, Model fit, R squared change, Descriptives, Part 

and partial correlations, Collinearity diagnostics, and Casewise diagnostics with Outliers 3 

standard deviations. Click Continue, Plots…, select *ZRESID as the Y variable and *ZPRED as 

the X variable, check Histogram and Normal probability plot, click Continue, and OK to run (or 

Paste to save the syntax). 

 

Let’s check the output file: 

 

 

Here we see that we have all of 

the cases we expect and that the 

means are as we expect. No 

apparent problems here. We 

checked the shapes of the 

distributions earlier, which 

showed a slight skew in lnsal, but 

it doesn’t look very serious. 

 

 

Here we see the strong correlation of lnsal with yearstt (.745) and the somewhat weaker 

correlation with leveld. The correlation of lnsal with the interaction term levxyear is not very 

useful when the interaction is constructed with raw (not centered) predictor variables. 

 

Descriptive Statistics 

 Mean Std. Deviation N 

= log of salary 11.1581 .31233 4558 

Estimated years in tenure 

track 

13.1709 8.26314 4558 

leveld (MA=0;PhD=1) .83 .376 4558 

levxyear 11.1129 9.05041 4558 



 Interactions and Centering (APA Salary Data)     MRC09 131 

 

Model Summary
d
 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 

Sig. F 

Change 

1 .745
a
 .554 .554 .20852 .554 5.667E3 1 4556 .000 

2 .777
b
 .604 .604 .19657 .050 571.680 1 4555 .000 

3 .779
c
 .607 .606 .19594 .003 30.499 1 4554 .000 

a. Predictors: (Constant), Estimated years in tenure track 

b. Predictors: (Constant), Estimated years in tenure track, leveld (MA=0;PhD=1) 

c. Predictors: (Constant), Estimated years in tenure track, leveld (MA=0;PhD=1), levxyear 

d. Dependent Variable: = log of salary 

 

This hierarchical analysis confirms that the interaction term does contribute significantly beyond 

the main effects, but we note that yearstt is the strongest predictor by far, accounting for 55.4% 

of the variance in lnsal, while leveld contributes an additional 5.0%. The interaction term 

levxyear contributes only .003 or 0.3%. While this is statistically significant, it may not be 

practically important. Nonetheless, we will include it in our model. 

Model 3 shows the coefficients for a regression model to predict lnsal. First, we note that both 

leveld and levxyear are zero for MA faculty, so Model 3 for MA faculty simplifies to 10.692 + 

.023 * (yearstt). For PhD faculty, leveld=1, so the B weight of .122 is added to the prediction of 

lnsal for all PhD faculty. Because leveld=1 for PhD faculty, levxyear is equal to yearstt for PhD 

faculty. Thus, the total weight given to yearstt for PhD faculty is .023 +.005. The model for PhD 

faculty alone is (10.692 + .122) + (.023+.005)*yearstt, which is 10.814 + .028*yearstt. Thus, 

the B weight for the interaction term (.005) is the difference in the weight given to yearstt for 

MA faculty (weight = .023) compared to PhD faculty (weight = .028). The significance test of B 

for levxyear is a test of whether the increment .005 is statistically significantly greater than zero. 

Average salary is greater for PhD faculty than for MA faculty with the same number of year in 

tenure track, and years in tenure track is more strongly related to salary for PhD faculty than for 

MA faculty. (You may need to read this paragraph again! Practice explaining it in your own 

words. A graph could be very useful, as we will soon see.) 
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Because the interaction term is the product of yearstt and leveld (and both variables have no 

negative values), the product levxyear is strongly correlated with each of these variables. Hence, 

the tolerance for all three variables is low when the interaction term is included on the third step. 

The tests of significance for these main effects in Model 3 are not interpretable because of the 

overlap with the interaction term. We may be interested in the contribution of the interaction 

beyond the main effects, but main effects beyond the interaction is less interpretable. 

 

We asked SPSS to give us casewise information on outliers that are 3 or more standard errors 

from the predicted value. If the errors were normally distributed, what proportion of the 

standardized residuals would we expect to be greater than 3 standard errors? From a Z table or 

from StatWISE we find this proportion to be .00135 on each tail, or .00270 for the two tails. 

How many cases would we expect to be 3 or more standard errors from prediction? This analysis 

included 4558 cases, and (.00270 * 4558) =12.3, so we expect about a dozen. Below is the first 

portion of a list of cases with Std. Residual greater than 3 in absolute value (+ or – 3).     

 
 

The entire list has 46 such cases, where the maximum standardized residual is 4.986. The 

implication is that the residuals are not normally distributed. We also note that only 5 of the 46 

outliers are negative, so we know we have positive skew. Because our sample is very large 

(N=4558), the departure from normality may not have a great impact, but it would be prudent to 

do some sensitivity analyses to see how much our models would be affected if we trimmed a 

portion of the outliers or Winsorized by setting the k most extreme cases on each end equal to the 

value of the case k steps from the end. For example, we might set the nine largest values equal to 

the tenth largest value and the nine smallest values equal to the tenth smallest value. Comparison 

of the original analysis with an analysis of the Winsorized data allows us to assess the impact of 

the most extreme cases on the original analysis.  

 

It is useful to examine the scatterplot of standardized residuals as a function of standardized 

predicted values (shown on the next page). We see several distinct vertical plots, 16 of them to 

be exact. Why do we have only 16 X values? What do they represent?  

 

We are using two predictor variables. The first, leveld, has two categories (MA, PhD) while the 

second, yearstt, has eight categories. The combination produces 16 distinct combinations of 

these two predictor values. The rightmost vertical plot represents Full Professors who have the 

most years on the job at PhD granting institutions, and the leftmost plot represents beginning 

faculty at MA granting institutions.  

 

We can draw a horizontal line through the zero value to help assess linearity and 

homoscedasticity. The plots look reasonably normal, or at least there are no extreme outliers. 

There appears to be somewhat greater variance for cases with greater predicted values. 

Categories with more cases tend to show greater spread, so we should take that into 

consideration as we interpret the spread. We do have more cases in the two top groups. 
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The histogram of standardized residuals combines residuals from all levels of the predicted 

value. It may help to imagine that the plot above is rotated 90 degrees clockwise and all points 

drop to the bottom, creating a distribution centered on zero and ranging from -4 to 6. 

 

This plot shows an interesting small clump of residuals on the right tail. Perhaps these are faculty 

with supplemented salaries, maybe from administrative work or grant work? Maybe Stanford? 
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Centered vs. uncentered predictors 

 

A centered variable is created by subtracting the mean of the original variable from every 

original observation. The centered variable has a mean of zero, with scores indicating deviations 

from the mean, positive or negative. There are advantages for centering predictors, especially 

when we wish to test interactions in a regression analysis and interpret B and beta values. 

 

When we create an interaction term by multiplying together two uncentered main effects, we are 

likely to observe a large correlation between the interaction term and the two main effects. When 

we enter the main effects and interaction term into a model together, these variables may have a 

high degree of multicollinearity with each other. Note in the Coefficients table how much the 

tolerance for the main effects decreases from Model 2 to Model 3, when the interaction term is 

added to the model.  Tolerance is (one minus multicollinearity).  

 

In general, the regression weights and the tests of statistical significance for uncentered main 

effects are not easily interpreted when the interaction term is included in the model. The null 

hypothesis for each t-test of B (or beta) weights is that the variable contributes to the prediction 

of Y beyond the contribution of all other variables in the model. In Model 3, the test of a main 

effect is the test of that main effect beyond the other main effect and also beyond the interaction. 

Ordinarily it makes much more sense to interpret the contribution of the interaction beyond the 

main effects than to interpret main effects beyond the interaction with uncentered predictors. The 

t-tests of statistical significance for the main effects are likely to be greatly reduced in the 

presence of the interaction because the interaction overlaps so much with main effects.  

 

The intercept can be interpreted as the predicted value of the criterion variable when all 

predictors are zero. With uncentered data, zero may not be interesting or even meaningful. In our 

example, the intercept in Model 3 in the Coefficients table is 10.692. That is the predicted value 

of lnsal for someone in a Master’s institution (leveld = 0) who has zero years in a tenure track 

position (yearstt = 0). However, the minimum value for yearstt in our data set is 1.5, for people 

in their first or second year. No one has zero years. This problem would be more salient if we 

used a predictor like GRE score, because then the intercept would be the predicted value for 

someone with a score of zero on GRE. That is just silly. 

 

To minimize rounding error when we center, we should use the mean computed to many places 

of accuracy. This is easily done in SPSS. Go to the Descriptive Statistics near the beginning of 

the regression output. The mean for leveld is shown as .83 (verify N=4558). To display the mean 

with more places of accuracy, double-click on the table, and then double-click on the mean, to 

see 0.8297498903027644. If you hold Ctrl while you press c (i.e., Ctrl-c) while the number is 

highlighted, the number will be stored in your temporary clipboard. You can paste this value into 

your SPSS syntax by holding Ctrl while pressing v (i.e., Ctrl-v). For example, we can create the 

centered variable for level by entering the following command into the syntax window:  

  

compute leveldc = leveld - 0.8297498903027644.  (I pressed Ctrl-v to insert the mean.) 

 

Alternatively, click Transform, Compute Variable…, in the Target Variable: window enter 

leveldc and in the Numeric Expression: window enter leveld - 0.8297498903027644, click OK.  

Rather than entering the 16 digits one-by-one, you can use the Ctrl-v trick here, too. 

 

Similarly, center yearstt:  compute yearsttc = yearstt - 13.170908293111014. 

compute ycxlc = yearsttc * leveldc. 
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It is instructive to compare the correlations for centered and uncentered variables.  

 
Notice that the correlations between level and years are the same with the uncentered and 

centered main effects (top dashed oval), but the correlations with the interaction terms computed 

from centered vs. uncentered main effects differ markedly (bottom dashed oval). The correlation 

with main effects is much larger for interaction terms based on the uncentered variables than for 

interactions based on centered variables (e.g., the correlations with yearstt are .789 vs. -.002)  

As always, a figure is worth a thousand words. The figures show why the correlation with 

yearstt is smaller for the centered interaction term than for the interaction term based on 

uncentered predictors. (Recall that there are more cases in the PhD condition – the dark squares.) 

 

Now we are ready to run the regression analysis with the centered variables. Replace yearstt 

with yearsttc, replace leveld with leveldc, and replace levxyear with ycxlc in the hierarchical 

analysis where we enter one variable on each step. 
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Compare this model summary to the earlier model summary, and you will see that they are 

essentially identical. That is, the contribution of each term in the hierarchical model is the same 

whether we use uncentered or centered predictors. The difference shows up in the Coefficients 

table, especially in the B coefficients, correlations with the interaction term, and tolerance.  

 

Consider Model 3. The B for the constant is 11.157. This can be interpreted as the predicted 

value of lnsal when all predictors are equal to zero. With centered variables, this means someone 

with average number of years in tenure track and an average person across the two values of 

leveld. Thus, the constant is the average value of lnsal for the sample (note that the mean in 

Descriptives = 11.158). If we wish to use the Unstandardized Coefficients for centered variables 

to predict lnsal for a specific case, we need to convert yearstt to yearsttc by subtracting the 

mean of yearstt, and convert leveld to leveldc by subtracting the mean for leveld. 

 

The beta weights in the final model are more interpretable with centered variables than with 

uncentered predictors. Yet, when we have a variable like leveld where 0 is meaningful, we may 

choose not to center it because the values of 0 and 1 are easier to use than the centered values. 
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Graphing interactions 

 

In this example, the interaction is statistically significant. Is it large enough to be practically 

significant? The answer to that question will depend on our goals. If we are interested for 

theoretical reasons in whether an interaction exists, then even a very small effect may be of 

theoretical interest. In our example we are building a model for prediction of salaries. Here a 

small effect may look unimportant; yet the presence of an interaction may have greater 

consequences for predictions at the extremes of the range, where predictions can diverge more. 

 

In addition to statistical significance, it is always important to describe the size and direction of 

an interaction. This can be done mathematically with the table of coefficients, but often it is 

desirable to present interactions with a figure. Interactions can be plotted using centered 

variables or uncentered variables, but it is likely to be easier to interpret figures with uncentered 

variables.  In our example, leveld takes on values of 0 for MA institutions and 1 for PhD 

institutions, while the centered version leveldc has the value of -0.8297498903027644 for MA 

institutions and + 0.17025010969723564 for PhD institutions, values that are not easy to use.  

 

Excel can produce useful figures using copy-and-paste information from SPSS analyses. Here 

we will use the Excel file Plotting Regression Interactions.xls, which is available in our class 

website, to help construct a figure. In this example we have only two predictors (uncentered 

yearstt and leveld) and their interaction (levxyear) for the dependent variable lnsal. To make 

our figure more useful, we will convert the predicted lnsal values back to salary values. A 

worksheet to help us is on the Log to raw tab.  

 

On the Log to raw tab we find labels (in orange cells) for the constant and the three predictor 

variables in the order they appear in the SPSS output, followed by the corresponding B weights 

in the yellow cells. The blue cells indicate values for the predictor variables that we wish to plot. 

In the example, I chose to plot values for 1, 15, and 30 years in tenure track for each of the two 

institution levels. The worksheet computes the predicted value of lnsal and converts that value 

into salary (by raising e to the value of lnsal). 

 

The B weight coefficient can be copied from SPSS with copy-and-paste if you have the SPSS 

output file open. With the Excel Log to raw tab open, go to the SPSS output. You can toggle to 

active files by holding Alt and pressing Tab. Go to Model 3 in the SPSS output file Coefficients 

table to locate the desired B weights. Double-click on the table to open Pivot Table Coefficients 

and then left-click on the B weight for the constant to highlight the number. Now hold the Shift 

key and left-click on the last coefficient to highlight all of the coefficients for Model 3. Now hold 

the Ctrl key and press c to copy the highlighted information to your clipboard. Next go to the 

Excel Log to raw page, left-click on the cell under the B weight column next to the constant, 

hold Ctrl and press v to insert the numbers from SPSS. Although the numbers may appear with 
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only a few decimal places, you will see that about 15 significant digits have been copied from 

SPSS if you left-click on a number. 

 

The modeled salary values are copied into a 2x3 table for graphing, and the values appear in the 

graph below.  

 

Here we notice that for those in a tenure track for 1 year, the difference between salaries at M.A. 

and Ph.D. institutions is 51144 – 45051 = $6,093, but for those in tenure track for 30 years the 

difference is $28,325. Small coefficients in regression can have a large effect if they act on a 

variable with large variance. Here the change in scale from log to raw salaries also contributes to 

the larger difference. Note that the model shows only major patterns, not details in the data. 

 

Variations: With categorical variables, it may be better to use bar graphs. With two continuous 

variables, you may choose to plot the relationship between one predictor and the criterion for 

each of three levels of the other predictor. Those three levels might be chosen as the mean and 

values one standard deviation above and below the mean, or you may choose other values that 

are easier to interpret. If you have used a log transformation you should plot more than two 

values on the horizontal axis to show the curvature in the model. Excel is very flexible, allowing 

you to edit figures in many ways.  

 

BIG CAUTION!  Check everything to make sure it is working correctly. With Excel it is 

terribly easy to have an error that is hidden in the code. It is easy to write over a formula by 

mistake or to enter a number in the wrong place or …. 


